

Detection of Metamorphic and Virtualization-based
Malware using Algebraic Specification

Matt Webster and Grant Malcolm
Department of Computer Science
University of Liverpool, UK

Matt Webster and Grant Malcolm
Department of Computer Science
University of Liverpool, UK

17th Annual EICAR Conference
May 2008

Matt Webster and Grant Malcolm - Detection of Metamorphic and Virtualization-based Malware using Algebraic Specification
2

Structure of the Presentation

 Introduction
• Formal software specification in Maude

 Formal detection of metamorphic viruses
• Dynamic analysis
• Static analysis – equivalence in context

 Formal detection of virtualization-based viruses

 Conclusion

Matt Webster and Grant Malcolm - Detection of Metamorphic and Virtualization-based Malware using Algebraic Specification
3

Formal Software Specification in Maude

 Maude consists of two parts:
• Software specification language

• Algebraic

• Term rewriting engine
• Equational and Rewriting logics

 Maude has been used to specify many different
languages
• Java, Prolog, Scheme...
• ... Intel 64 assembly language

 Maude is formal... therefore we can use it to prove
program equivalence

Matt Webster and Grant Malcolm - Detection of Metamorphic and Virtualization-based Malware using Algebraic Specification
4

A Maude Specification of Intel 64

 Our specification is based on store semantics

 Syntax of instructions

 Semantics of instructions

 So far we have done this for MOV, ADD, SUB, OR,
AND, XOR, TEST, PUSH, POP, NOP
• In principle, this subset can be extended further

MOV_,_ : Variable Expression -> Instruction

S ; MOV V,E [[V]] = S[[E]]

S ; MOV V1,E [[V2]] = S[[V2]] if V1 =/= V2

Matt Webster and Grant Malcolm - Detection of Metamorphic and Virtualization-based Malware using Algebraic Specification
5

Dynamic Analysis

 We can use the Maude term rewriting engine to
successively apply equations
• The result gives us the final value of some variable

 Equations used:
• S ; MOV V,E [[V]] = S[[E]]

• S ; MOV V1,E [[V2]] = S[[V2]] if V1 =/= V2

 We can do the same for sequences of instructions
• Effectively, we have an interpreter for MOV
• The same can be done for the rest of Intel 64

 s ; MOV eax,0 ; MOV ebx, eax [[ebx]
==> s ; MOV eax,0 [[eax]]
==> s [[0]] ==> 0

Matt Webster and Grant Malcolm - Detection of Metamorphic and Virtualization-based Malware using Algebraic Specification
6

Dynamic Analysis in Practice

 We can do dynamic analysis using Maude to detect
metamorphic viruses (Webster & Malcolm, 2006)

 Win95/Bistro

 Perform equational rewrites using Maude

 Therefore these fragments are equivalent*
* We have restricted attention to esp, ebp and the stack for the sake of simplicity

push ebp push ebp
mov ebp, esp push esp

 pop ebp

Maude> reduce s ; a [[stack]] is s ; b [[stack]].
result: true

Maude> reduce s ; a [[ebp]] is s ; b [[ebp]] .
result Bool: true

a b

Matt Webster and Grant Malcolm - Detection of Metamorphic and Virtualization-based Malware using Algebraic Specification
7

A Problem with Equivalence-based
Detection

 Metamorphic viruses need not rewrite themselves
with equivalent code, e.g., Win9x.Zmorph.A

 After executing both fragments, the stack and the
instruction pointer have the same values. However,
registers edi, ebx, ecx and edx differ

 We call this condition semi-equivalence

 mov edi, 2580774443 mov ebx, 535699961
 mov ebx, 467750807 mov edx, 1490897411
 sub ebx, 1745609157 xor ebx, 2402657826
 sub edi, 150468176 mov ecx, 3802877865
 xor ebx, 875205167 xor edx, 3743593982
 push edi add ecx, 2386458904
 xor edi, 3761393434 push ebx
 push ebx push edx
 push edi push ecx

Matt Webster and Grant Malcolm - Detection of Metamorphic and Virtualization-based Malware using Algebraic Specification
8

Equivalence in Context

 Win9x.Zmorph.A

 After executing, all variables have the same values

 This is called equivalence in context

 mov edi, 2580774443 mov ebx, 535699961
 mov ebx, 467750807 mov edx, 1490897411
 sub ebx, 1745609157 xor ebx, 2402657826
 sub edi, 150468176 mov ecx, 3802877865
 xor ebx, 875205167 xor edx, 3743593982
 push edi add ecx, 2386458904
 xor edi, 3761393434 push ebx
 push ebx push edx
 push edi push ecx

 mov edi, 0 mov edi, 0
 mov ebx, 0 mov ebx, 0
 mov ecx, 0 mov ecx, 0
 mov edx, 0 mov edx, 0

Semi-equivalent code

Matt Webster and Grant Malcolm - Detection of Metamorphic and Virtualization-based Malware using Algebraic Specification
9

Equivalence in Context (2)

 There may be other conditions under which
equivalence in context applies.

 In general:
• If p1 and p2 are semi-equivalent instruction

sequences...
• ... and they are both followed by p...
• ... and p's behaviour is not affected by the unequal

variables in p1 and p2...

• ... and p overwrites all the unequal variables...

• Then p1 and p2 are equivalent in context of p.

 This is the Equivalence in Context Theorem

Matt Webster and Grant Malcolm - Detection of Metamorphic and Virtualization-based Malware using Algebraic Specification
10

Equivalence in Context (3)

 Equivalence in Context can be applied to detection

Matt Webster and Grant Malcolm - Detection of Metamorphic and Virtualization-based Malware using Algebraic Specification
11

Equivalence in Context (4)

 The Equivalence in Context Theorem holds for all
instruction sequences
• Q. How does the Maude specification of Intel 64 help?
• A. We can use the Maude specification to determine:

• which variables affect the behaviour of an instruction
• which variables are affected by an instruction

• Therefore, the Maude specification of Intel 64 is useful
for applying equivalence in context

Matt Webster and Grant Malcolm - Detection of Metamorphic and Virtualization-based Malware using Algebraic Specification
12

Detection of Virtualization-based
Malware

 Previously, we used the Maude specification of Intel
64 for dynamic analysis

 However, we can also use it to generate code
automatically...
• ...according to some specification

 To do this, we use Maude's built-in search
functionality

 This can be applied to detection of virtualization-
based malware

Matt Webster and Grant Malcolm - Detection of Metamorphic and Virtualization-based Malware using Algebraic Specification
13

Virtualization-based Malware

 Virtual machine-based rootkits (VMBRs) (King et al,
2006)

infection

Matt Webster and Grant Malcolm - Detection of Metamorphic and Virtualization-based Malware using Algebraic Specification
14

Detecting Virtualization-based Malware

 Programs such as Blue Pill can detect VMBRs
• Use the SIDT instruction (Rutkowska, 2004)

• Returns the contents of the interrupt descriptor table
• The IDT differs during virtualization

 However, VMBRs can use countermeasures
• Detect when Blue Pill is loaded
• Breakpoint on the SIDT instruction
• Emulate SIDT to hide virtualization from Blue Pill

 What if we generate SIDT at run time?
• Detection of Blue Pill/SIDT not possible
• Detection of malware by SIDT will still work

Matt Webster and Grant Malcolm - Detection of Metamorphic and Virtualization-based Malware using Algebraic Specification
15

Detecting Virtualization-based Malware
(2)

 We can use the Maude specification of Intel 64
• Generate new “variants” of Blue Pill automatically

 Q. Why not just use a metamorphic engine?
• The Maude specification of Intel 64 is formal

• Each generated variant is automatically verified formally

• Very little programming required
• Metamorphic engines are likely to be buggy

Matt Webster and Grant Malcolm - Detection of Metamorphic and Virtualization-based Malware using Algebraic Specification
16

Detecting Virtualization-based Malware
(3)

 Proof of concept system

 Produces 1000 different programs in ~0.36 seconds

rl [1] : S[[eax]] => S ; mov ebx, "sidt" [[eax]] .
rl [2] : S[[eax]] => S ; mov eax, ebx [[eax]] .
rl [3] : S[[eax]] => S ; mov ecx, ebx [[eax]] .
rl [4] : S[[eax]] => S ; mov eax, ecx [[eax]] .

Let the end condition be s[[eax]] = "sidt"

Then, apply any of the following to reach the end condition from s[[eax]]:

(1,2), (1,2,3), (1,2,3,4), (1,3,4), (1,3,3,4), (1,3, ... ,3,4), ...

Matt Webster and Grant Malcolm - Detection of Metamorphic and Virtualization-based Malware using Algebraic Specification
17

Future Work

 Detection of metamorphic viruses
• Specify a larger subset of Intel 64
• Investigate equivalence in context

• Loops
• Conditionals

 Detection of virtualization-based malware
• Scale up the proof-of-concept system

• Produce programs that generate SIDT on the fly, and
execute it

Matt Webster and Grant Malcolm - Detection of Metamorphic and Virtualization-based Malware using Algebraic Specification
18

Conclusion

 Intel 64 specification in Maude
• Detection of metamorphic viruses

• Dynamic analysis
• Static analysis (Equivalence in Context)

• Detection of virtualization-based malware
• Automatic generation of formally-verified “Blue Pill”

programs

Matt Webster and Grant Malcolm - Detection of Metamorphic and Virtualization-based Malware using Algebraic Specification
19

End of Presentation

 Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

